Eigenvalue Problems for Nonlinear Differential Equations on a Measure Chain
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Eigenvalue Comparisons for Differential Equations on a Measure Chain
The theory of u0-positive operators with respect to a cone in a Banach space is applied to eigenvalue problems associated with the second order ∆-differential equation (often referred to as a differential equation on a measure chain) given by y(t) + λp(t)y(σ(t)) = 0, t ∈ [0, 1], satisfying the boundary conditions y(0) = 0 = y(σ2(1)). The existence of a smallest positive eigenvalue is proven and...
متن کاملNonlinear eigenvalue problems for a class of ordinary differential equations
originates in the works of Mirzov [17] and Elbert [5], who named these equations `half linear’. This theory extends various aspects of oscillation theory, such as the Picone identity [10], Sturm comparison theorem [16, 17], oscillation and nonoscillation criteria of Kneser type [16] and Hille type [14], and other oscillation criteria [3]. One branch of this research is the study of the eigenval...
متن کاملEigenvalue Problem for a Class of Nonlinear Fractional Differential Equations
In this paper, we study eigenvalue problem for a class of nonlinear fractional differential equations D 0+u(t) = λf(u(t)), 0 < t < 1, u(0) = u(1) = u′(0) = u′(1) = 0, where 3 < α ≤ 4 is a real number, D 0+ is the Riemann–Liouville fractional derivative, λ is a positive parameter and f : (0,+∞)→ (0,+∞) is continuous. By the properties of the Green function and Guo–Krasnosel’skii fixed point theo...
متن کاملA Jacobi-Davidson method for two-real-parameter nonlinear eigenvalue problems arising from delay-differential equations
The critical delays of a delay-differential equation can be computed by solving a nonlinear two-parameter eigenvalue problem. The solution of this two-parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR-type method for solving such quadratic eigenvalue problem that only computes real valued critical delays, i.e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2000
ISSN: 0022-247X
DOI: 10.1006/jmaa.2000.6781